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A study is made of the propagation of acoustic waves in a semi-infinite expanse of 
radiating gas on one side of an infinite, plane, radiating wall. A solution is found, 
in particular, for the case of sinusoidal oscillations in both position and tem- 
perature of the wall. The solution is based on a single linear integro-differential 
equation that plays the same role here as does the classical wave equation in 
equilibrium acoustic theory. The solution is applicable throughout the range 
from a completely transparent to a completely opaque gas and from very low 
to very high temperatures. The solution appears, in general, as the sum of two 
types of travelling waves: (1) an essentially classical sound-wave, but with a 
slightly altered speed and a small amount of damping and (2) a radiation-induced 
wave whose speed and damping may be either large or small, depending on the 
temperature and absorptivity of the gas. Since the waves are coupled, both types 
will usually be present together, even in the special cases of pure motion or 
pure temperature variation of the wall. 

Introduction 
This work arose out of a desire to learn something about the non-equilibrium 

interaction between thermal radiation and fluid flow in a case in which the 
mathematics would not be too difficult. As in earlier investigations of chemical 
and vibrational non-equilibrium (see, for example, Moore 1958, Broer 1958, 
Clarke 1958, and Vincenti 1959), the best possibility appeared to lie in the study 
of acoustic waves in one dimension. It transpires, in fact, that interesting results 
can be obtained once more with nothing more sophisticated than complex 
algebra, though the algebraic manipulations are at  times rather tedious. 

To fix the problem, we consider in particular a semi-infinite expanse of radia- 
ting gas on one side of an infinite, plane, radiating wall and inquire as to what 
disturbances are caused in the gas by small sinusoidal oscillations in both the 
position and temperature of the wall. In  so far as its one-dimensional nature is 
concerned, this problem has much in common with the classical astrophysical 
problem of the plane-parallel stellar atmosphere (see, for example, Chandrasekhar 
1950 or Kourganoff 1952). In  astrophysical problems, however, the motion of 
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the gas may be neglected, and there is no occasion to consider the influence of 
solid walls. Recently, several authors with aerodynamic interests (Goulard 
19596; Goulard & Goulard 1959; Tellep & Edwards 1960) have extended the 
treatment of radiation in the plane-parallel case to include the effects of both 
fluid motion and solid boundaries, but primarily with the study of boundary- 
layer heat-transfer in mind. 

So far as the authors are aware, the existing original literature on radiative 
effects in acoustic propagation is limited to work by Stokes (1851) and by 
Prokofyev (1957, 1960). Stokes’s paper, written over 100 years ago, was part 
of a vigorous controversy then going on in the pages of the Philosophical Magazine 
with regard to the validityof Laplace’s adiabatic theory of sound as against 
Newton’s isothermal theory. Stokes, on the basis of approximations appro- 
priate to highly transparent, low-temperature air, was able to show that radiation 
could not have an appreciable effect under ordinary atmospheric conditions, and 
hence that Laplace’s adiabatic hypothesis could not be called into question on 
that account. (For a brief outline of Stokes’s work, see also Rayleigh 1945, vol. 11, 
p. 24.) Prokofyev’s work, which came to the authors’ attention after the present 
study was nearly complete, considers the problem of thermally radiating acoustic 
waves in great generality, including the effects of viscosity and thermal con- 
ductivity as well as the smaller effects (for aerodynamic purposes, at least) of 
radiation scattering, radiation pressure, and the direct contribution of radiation 
to internal energy. Specific results are restricted to certain extreme values of 
the variables, however; and the important relationship between the waves and 
the boundary conditions is not taken into account. 

To simplify the problem and to isolate the influence of radiation, we assume 
here that non-equilibrium effects from other processes, such as molecular trans- 
port, dissociation, vibration, etc., are negligible. Radiation scattering, radiation 
pressure, and the contribution of radiation to  internal energy are also neglected. 
For simplicity, the gas is assumed to be perfect. The radiative effects are taken 
into account on the basis of the usual quasi-equilibrium hypothesis and the 
assumptionof a ‘grey gas’, that is, that the absorption coefficient is independent of 
wavelength. The last assumption is, however, not essential. 

On the foregoing basis and with the approximations usual in acoustic theory, 
the fundamental equations combine to give a single linear integro-differential 
equation for a disturbance-velocity potential. This equation, which appears as 
equation (38), includes the emission and reflexion effects of the wall and is 
applicable over the complete range of the radiation parameters. It plays the 
same basic role here as does the one-dimensional wave equation in classical 
equilibrium acoustic theory. With the aid of a suitable approximation to the 
attenuation function appearing in the radiation terms, the equation is solved 
for the case of a black wall undergoing sinusoidal disturbances. The solution is 
found to appear, in general, as the sum of two waves: (1) a slightly modified 
version of the classical sound wave, and ( 2 )  a radiation-induced wave that has 
no counterpart in classical acoustic theory. 
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Basic equations 
We begin by writing down the equations for three-dimensional time-dependent 

flow neglecting molecular-transport terms but including the effect of radiative 
transfer of heat (see, for example, Hirschfelder, Curtiss & Bird 1954 or Lighthill 
1960). In  suffix notation, with the usual convention that repeated dummy 
subscripts denote summation, the equations for conservation of mass, momentum, 

and 

D~~ ap 
Dt axi 

p-+- = 0 (i = 1,2 ,3)  

Dh Dp 
Dt Dt 

p--- = Q. (3) 

Here p is the mass density, ui (i = 1 ,2 ,3 )  the velocity component in the xi 
direction, p the pressure, h the enthalpy per unit mass, and Q the net rate of heat 
input to the gas per unit volume as the result of radiation. The derivative 
following a fluid element is given as usual by D( )/Dt = a( )/at + uj a( )/ax,. 

In  line with the neglect of all non-equilibrium effects other than radiation, 
the enthalpy is related to the other state variables by an equilibrium thermo- 
dynamic relation of the form h = h(p,  p).  In  particular, for the perfect gas assumed 
here we have 

(4) 

where y is the (constant) ratio of specific heats. The temperature T, which will 
also enter later in the evaluation of Q ,  is given correspondingly by 

h=--  Y P  
Y - l P ’  

T = PIRP, ( 5 )  

where R is the gas constant per unit mass. 
In  accord with the assumptions of the introduction, the foregoing system of 

equations neglects the small direct contribution of the radiation to the fluid 
pressure and to the internal energy of the gas. This is formally equivalent to 
assuming that the speed of propagation of radiation is infinite. With this assump- 
tion, the only effect of radiation is the appearance of the rate of heat transfer 
Q in the energy equation (3). (For a system of flow equations that takes account 
of radiation pressure and internal radiant energy, see Prokofyev 1957.) 

To evaluate Q ,  recourse must be had to the theory of radiant heat transfer. 
(Among the several texts excellent for this purpose, primarily by astrophysicists, 
are those of Chandrasekhar 1950, Kourganoff 1952, and Unsold 1955; a useful 
review for aerodynamicists is given in the paper by Lighthill 1960.) If Q, is the 
net rate of heat input per unit frequency per unit volume by radiation in the 
frequency range from v to v + dv ,  then the value of Q at a point can be written 

Q = S m Q V d v  = SW (A , -E , )dv ,  
0 0 
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where A, and E, are respectively the rate of absorption and emission of radiation 
in the aforementioned range. 

To evaluate A,  at a point it is necessary to consider the radiation intensity, 
which varies not only from point to point, but also with direction through any 
given point. If a particular direction through a given point is identified by the 
symbol Q, then the intensity of radiation through that point in the direction f2 
and in the frequency range v to v + d v  can be specified by the value of the specific 
intensity I,,(Q), which is by definition the rate of energy transfer per unit fre- 
quency, per unit solid angle in the given direction, and per unit area normal to 
that direction. Now let the absorption coefficient a, denote the proportion of the 
energy of a radiant beam in the frequency range v to v + dv that is absorbed by the 
gas per unit distance. The rate of absorption A, per unit volume at  a point can 
then be shown to be given by 

where the integration extends over all of the elements of solid angle d f2  about the 
point in question. The absorption coefficient a, is a function of the local state of 
the gas; in the usual quasi-equilibrium theory, it is taken to have the value 
appropriate to complete equilibrium at the local thermodynamic state. 

In  accordance with the assumption of quasi-equilibrium, the rate of emission 
E, per unit volume is taken as 

E, = 47~a,B,(T). @a)  

Here B,,(T) is the equilibrium intensity given by the Planck function 

where T is the local temperature, c the speed of light, and h and k the Planck 
and Boltzmann constants, respectively. 

To find the specific intensity I,(Q) required in equation (7), it is necessary to 
solve the so-called ‘equation of transfer’, which is the basic differential equation 
governing the intensity of radiation in a given direction in a gas in radiative non- 
equilibrium (see, for example, Chandrasekhar 1950). If scattering by the gas is 
neglected, the formal solution appropriate to the earlier assumption of an 
infinite speed of light can be written 

UQ) = 4PS, Q) exp { - 7,(rs, Q)} + a,,?, Q) &(r, Q) exp { - TAT, Q)} dr.  

(9a) 

This relation gives the specific intensity at  a point in the field and in a given 
direction Q as the sum of two parts: (1) the specific intensity from a solid surface 
a radial distance r, away from the point in the direction opposite to Q, attenuated 
by an exponential factor exp { - r,(rs, a)> to account for absorption by the inter- 
vening gas, and (2) the total effect of the emission from elements of gas a variable 
distance r in the direction opposite to Q, each elementary contribution attenuated 
by the appropriate factor exp { - T,(r, Q)} and the whole summed over all elements 

s,’” 
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from the point to the solid surface. The quantity ~ , ( r ,  Q), called the 'optical 
thickness' of the gas over the radial distance r from the point, is given by 

7,,(r, Q) = a,(B, Q) dB. Jor 
The contribution Q, to the integral of equation (6) can now be found by sub- 

stitution from equations (7)) (Sa) ,  and (9a). The result, after changing the radial 
variable of integration from r to 7,, can be written 

Q, = a,,( Io4" dQ [ 1,(7,,s) e-Tus + s,"" B, e-7y d ~ ,  

When supplemented by this equation and equations (6)) ( S b )  and (9b) ,  equations 
(1) to (5) constitute a set of seven equations for the seven unknowns p, ui, 
p ,  h, and T (assuming, of course, that I,(T,~) and a,, are known). 

In  working with the foregoing equations it will also be useful to have an 
expression for the rate of heat transfer through an infinitesimal element of area 
with given orientation within the fluid. If q, is the rate of heat flow through the 
element per unit area per unit frequency and in the direction of a chosen normal 
to the element, and if x is the angle between that normal and the direction Q, 
then we can write 

q, = /;"lv(Q)cosXdQ. 

After substitution from equation ( 9  a )  this can be written 

In applying this equation, care must be taken to reckon the angle x correctly, 
i.e. to the proper direction Q, which is opposite to the direction along which the 
integration with respect to 7, is made. 

One-dimensional unsteady flow 
The next step is to simplify the foregoing equations to the case in which 

conditions are a function of only one Cartesian space variable, x say. The 
simplification of the differential terms in equations (l), (2) and (3) is obvious and 
need not be discussed. The transfer term Q, however, requires some attention, 
particularly as regards the effect of the wall. 

To fix our ideas, let us consider a semi-infinite expanse of gas on one side of a 
solid wall perpendicular to the x-axis and located at  x = xw (see figure 1). Later 
x, will be regarded as a function of time; but, since the situation is assumed to be 
quasi-steady as regards radiation (i.e. assuming an infinite speed of light), this 
is of no importance in the treatment of Q itself. Let the direction through the 
point at x be defined by the angles 8 and h as shown-that is, r ,  8, h are spherical 
polar co-ordinates centred on the point. The element of solid angle can then be 
written as dQ = sinOd8dh or, if p = cost), as dQ = -dpdh. The co-ordinate 
2 of any other point in the field is given by 2 = x + r cos 8 = x + rp, so that for 
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a fixed value of x we have dr = dalp. With this transformation, equation (9b) 
for 7” can be written 

or, since a, is a function only of x in the present instance, 

7u(x, 2, P )  = {rv(2) - SY(X)>/P = (4” - rJllu7 

where (13) 

The quantity rY(x) is the optical thickness, parallel to the x-axis, of the gas 
between the wall and the station x. 

FIGURE 1. The co-ordinate system. 

In  terms of the foregoing variables, the integral over dQ in equation (10) 
which we denote by c, can now be written 

where I ) ; I ,~  = y,(xs) specifies the location of any solid surface that is perpendicular 
to the x-axis. Since all of the quantities in the integrand are independent of A 
in the present case, the integration with respect to this variable can be carried out 
at once and provides a factor 2 ~ .  In  the integration with respect to p, a distinc- 
tion is necessary between the ranges + 1 to 0 and 0 to - 1. In  the former range 
no solid surface is encountered and hence rvS = 00. In  the latter range, the wall 
is present at  x = xw, and we have qVs = 7”(xW) = 0. Dividing the integration with 
respect to p into these two ranges and interchanging the order of integration in 
the integral involving B,, we arrive in the end at  the following result (where for 
the sake of uniformity the integration over p from 0 to - 1 has been formally 
replaced by an integration over -p  from 0 to + 1) : 

-F: = 2 T { p u ( 0 ,  -p )  e - ~ ~ ” “ d l l + ~ o ~ ~ B , ~ i ~ ~ ” - ~ ” ~ ~ 4 u + ~ m ~ v ~ l ~ 4 ” - r . ~ d 4 v )  7 V  * 

( 1 4 4  

The function E,(z) that appears here is a particular case of the integro-expon- 
ential function of order n, defined by 

The properties of this function are discussed and numerical values tabulated in 
the text by Kourganoff (1952), pp. 253 and 266. Note that in the present one- 
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dimensional case, B,, is a function only of x or alternatively only of q,,, which is 
the reason that it can be taken outside the integration with respect to p. 

It remains to evaluate I,,(O, -p), the specific intensity at the wall in equation 
(14a). To this end, it is written as the sum of three parts, due respectively to 
emission, specular reflexion, and diffuse reflexion, or 

m -PI = Lp, -p) +l ; s (O ,  -p)  +4p, -PI. (15) 

These will be considered in order. 
(a )  According to Lambert’s law, the specific intensity of emitted radiation is 

independent of direction, i.e. of -p. In  line with the quasi-equilibrium assump- 
tion it can be written 

JT,,(O, -p) = I , ,(O) = ~UB,(T,)> (16) 

where e,, is the emissivity of the wall for radiation of frequency v, and T, is the 
wall temperature. 

( b )  The specific intensity I ; s ( O ,  -p) of specularly reflected radiation does 
depend on direction. It can be found by multiplying the corresponding incoming 
intensity I,(O, p) by the fraction rVs of incoming radiation of frequency Y that is 
specularly reflected. We thus obtain, with the aid of equation (9a )  and the 
subsequent changes of variable, 

&(O, - p) = rusIU(O) p) = rus P-~B,, e-Fuifi djj,,. (17) Som 
Strictly speaking, the specular reflectivity r,,, may itself be a function of direction, 
but we shall ignore this complication and assume it to be independent of p. 

( c )  To find the intensity of diffuse reflexion, which is by definition independent 
of p, we first specialize the general equation (12) to find the heat flux at  a point 
on the wall. If the inward normal to the wall is taken as the pertinent one, then 
for the present one-dimensional case we have cos x = cos 8 = p. Transforming 
equation (12) into the new variables and handling the integrations in the same 
manner as for the integral of equation (lo), we obtain finally for a point on the 
wall (y,, = 0) 

In  this equation for the net heat flux to the wall, the second integral is the flux 
into the wall from the gas, while the first integral is the flux out of the wall to 
the gas. If r,,, is the fraction of the incoming radiation in a given direction p 
that is diffusely reflected, and if it  is assumed that this fraction, like r,,,, is indepen- 
dent of p, then the portion of the incoming flux that is diffusely reflected is given 
by the second integral multiplied by rVd. The portion of the outgoing flux that 
arises from the diffuse reflexion is also represented by the first integral if we put 
IJO, -p)  in place of I,(O, -p). Equating these two expressions and utilizing 
the fact that &(O, -p) is actually independent of p, we thus obtain 



456 Walter G. Vincenti and Burrett 8. Baldwin 

The final result for Q, is now found by collecting the expressions (16), (17), 
and (19), substituting the result into equation (14a), and then using the expres- 
sion thus obtained for to replace the integral term in equation (10). We thus 
obtain finally for the present one-dimensional situation with a single wall 

Of the various terms on the right, those containing e,,, rUd, and rps represent the 
radiative heat input to an element of gas at a point 3, due respectively to emission, 
diffuse reflexion, and specular reflexion from the wall; the next two terms repre- 
sent the heat input from the other elements of gas, the first from the elements to 
the left of y,, and the second from the elements to the right; the last term repre- 
sents the heat loss from the element by emitted radiation. Equation (20) agrees 
with relations given earlier by Goulard (1959b), who, however, did not include 
the effect of specular reflexion (see also Tellep & Edwards 1960). The formalism 
here, however, is considerably different. 

In  the special case of complete equilibrium, B,(T) is everywhere the same and 
Q, must vanish. Application of these conditions in equation (20) and use of the 
properties of the functions Em@) lead to the known result that at equilibrium 
(and in the present case in which rud and rUs are independent of the direction of 
the incident radiation) 

Consistent with the basic quasi-equilibrium assumption, this relation is also 
taken to be true in the non-equilibrium situation, with the same numerical values 
of the various quantities as apply at  equilibrium. 

q, = 1 - r  Vd -rUs. (21) 

Grey-gas approximation 
To find the total value of Q for use in the flow equations, it is necessary to 

integrate equation (20) over all values of v from 0 to 00 (cf. equation (6)). This leads 
to complicated double integrals that make further progress difficult. In  astro- 
physics it has been found fruitful to side-step this difficulty by introducing the 
so-called 'grey-gas approximation '. The same procedure will be followed here. 
A less restrictive method that leads to qualitatively the same results is outlined 
in the concluding section. 

The grey-gas approximation consists in replacing the absorption coefficient 
a, by a constant value a independent of v. With this approximation, 3, as given 
by equation (13) is also independent of v, i.e. 
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If c,,, rUd, and ru8 are also assumed independent of v, equation (20) can then be 
readily integrated with the aid of Stefan's law, 

0- 

7T 
/om B,dv = - T4, (23) 

where g is the Stefan-Boltzmann constant. We thus obtain 

The foregoing relation can be expressed in a useful alternative form by in- 
tegrating each integral once by parts. In  doing this, use is made of the general 
differentiation formula dE,(z)/dz = - E,-,(z) and of the special values E2(0)  = 1, 
E3(0) = 4, and E2(co) = E3(co) = 0. With the aid of the relation (21), we thus 
obtain finally 

T3E,(q - 7) d T )  . 

( 2 5 )  

;i= ?/ + 4r, /-'=" T3E2(y" + 7) d T  - 4 /- T3Ez(7 - q)  d T  + 4 
?/ =O ?/=O ?/=7 

Here Tz=,u is the temperature of the gas immediately adjacent to the wall, 
which need not be the same as that of the wall itself in the assumed absence of 
molecular transport processes. Equation ( 2 5 )  shows clearly that Q vanishes 
when T is everywhere the same. 

Acoustic equations 
We now proceed to the linearized approximation to the foregoing equations. 

To this end, we consider disturbances on a uniform gas at rest and write u = u', 
p = p,+p', T = T,+T', etc., where the subscript 0 denotes the uniform con- 
ditions in the undisturbed gas and the primes denote the disturbances therefrom, 
which are to be regarded as small. For the undisturbed field to be uniform, it 
must, of course, be in radiative equilibrium (Qo = 0); inparticular, theundisturbed 
wall temperature Two must be equal to the uniform gas temperature To. 

The linearization of the differential terms in the flow equations proceeds 
straightforwardly in the usual fashion. In  the assumed one-dimensional situation, 
we obtain, as the linearized approximation to the conservation equations ( l ) ,  

and 

auf apf 
p -+- = 0, 

0 a ax 

ah' apt 

0 at at 
p _ _ _  = Qf 

(27 1 
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The linearized forms of the state relations (4) and ( 5 )  are 
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and 

The linearization of the radiative-transfer term Q requires somewhat more 
attention. To begin, we note that the absorption coefficient, being a function of 
the local thermodynamic state, can also be written in the form a = ao+a’. 
Equation ( 2 2 )  for the optical thickness 7 then becomes 

where explicit recognition has now been taken of the fact that the  displacement 
x, of the wall from the origin is a function of time. If this displacement is assumed 
to be small, of the same order as the primed quantities, then? can also be written 
in the form 

7 = aox + T I ,  (31) 

where 7’ = -aoxw(t)+ a’dP. I” x w ( t )  

The linearization is then most readily carried out on the basis of equation ( 2 5 ) .  
Taking the integral from 9 = 0 to 7 as a typical term, we first expand E,(7 - y) 
as a Taylor series with the aid of equation (31), i.e. as 

E2(7 - 9 )  = E,[ao(x - 2 )  + (7l - 5‘11 

= E,[a,(x - 2)]  + [dE2(Z)/dz],=,o(x-j;) (7’ - r”’) + . . . . (32) 

Since dT = dT‘, the integral can therefore be approximated to the first order 
in small quantities as 

where dT’ has been replaced on the right by (aT‘/ax),d2, the subscript 2 indicating 
that the derivative is to be evaluated as a function of the variable of integration 2. 
Writing the final integral as an integral from 0 to x minus an integral from 0 to 
x,(t), and discarding the integral from 0 to x,(t) as being of second order in small 
quantities, we obtain finally 

By treating the other integrals in equation (25) in similar fashion and replacing 
(T$- TtEZw) by the linear approximation 4Ti(TL - TL=,), where conditions at  
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the wall have been transferred to x = 0 as is usual in acoustic theory, we obtain 
the linearized form of the radiative-transfer term as follows 

One difficulty in the foregoing development needs to be mentioned. This arises 
from the fact that the first and higher derivatives of E,(z) are singular at z = 0 
(see Kourganoff 1952). This means that a series expansion such as that of equation 
(32) is not valid throughout the entire interval of integration-for example, at  
the limit Z = x in the integral considered above. Furthermore, because of the 
singular behaviour of the derivative of E,(z), it  is to be expected from equation 
(25) that the derivatives of Q and hence of other physical quantities will be 
infinite at the wall (7 = 0). It follows that difficulties must be encountered in 
justifying the transfer of boundary conditions from the wall to the origin, as is 
done both in classical acoustic theory and in the present paper. And finally, 
because of this entire situation, any attempt to extend the foregoing treatment 
beyond the linear approximation fails completely. A detailed re-examination of 
the whole problem shows that a valid systematic expansion procedure can be 
obtained by transforming from the geometrical co-ordinate x to the optical 
thickness 7 in the left-hand side of the conservation equations (1) to (3). The use 
of such a non-inertial and distorted co-ordinate system greatly complicates the 
fluid-mechanical terms in the equations but allows the expansion of the radiation 
term to be handled without difficulty. The details, however, are lengthy and 
tedious; and, fortunately for present purposes, the final result for the first 
approximation turns out to be the same as that obtained by the non-rigorous 
procedure given above. For this reason, a complete treatment of the matter will 
be deferred until a later time. 

We now have in equations (26) to (30), when supplemented by equation (33) 
for Q', a set of five linear equations for the five unknowns p', u', p ' ,  h', and T'. 
They can be combined into a single integro-differential equation for a potential 
function as follows. First, the potential function q5 is defined such that the 
momentum equation is satisfied, i.e. by 

Then, to find the governing equation for 4, we eliminate h' from the energy equa- 
tion (28) by means of the state relation (29) and then replace ap'/at in the resulting 
equation by means of the continuity relation (26). This gives 
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or, after substitution from equations (34)  and introduction of the speed of sound 
a, = (ypo/po)i for the assumed perfect gas, 

To eliminate T’ in the expression for Q’ (cf. equation (33) ) ,  we differentiate the 
state relation (30) with respect to t and again replace ap’lat by means of the 
continuity relation (26). This gives 

The final equation is now obtained by differentiating equation (35)  with respect 
to t ,  after substituting for Q’ from equation (33), and eliminating T‘ with the 
aid of equation (36). With the notation 

the following equation is obtained as the integro-differential equation for the 
disturbance potential + 

The combination W, is the wave-operator from classical (i.e. isentropic) acoustic 
theory; W, is also the classical wave-operator except that the isentropic speed 
of sound a, = ( y R T ) t  is replaced by the isothermal speed of sound aoy-g = (RT)i. 
The dimensionless combination ( y  - 1) vT:/yBp,a, that appears on the right- 
hand side of equation (38 )  is the form, appropriate to a perfect gas, of one of 
the two dimensionless parameters that govern the combination of fluid con- 
vection and radiative transfer. Its inverse has been referred to in the Russian 
literature (see, for example, Adrianov & Shorin 1958) as the ‘ Boltzmann number ’, 
given in general by NBo = cPpV/vT3,  

where cP is the specific heat at  constant pressure and V is a characteristic speed 
(equal respectively to y R / ( y  - 1) and a in the present instance). The combination 
aOaO that also appears on the right-hand side of equation (38 )  has the dimensions 
of (time)-l and is eventually to be compared with a characteristic time of motion 
of the wall. The resulting second dimensionless parameter has been called by the 
Russians the ‘ Bueger number ’, given generally by 

(39a) 

N,, = aL, (39b)  
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where L is a characteristic length (equal to a,, times a characteristic time in the 
present application). The same combination NBu/NBo that thus, in effect, appears 
in equation (38) has been shown by Goulard (1959a) to govern stagnation-point 
energy-transfer in very-high-speed re-entry problems. 

The structure of equation (38) is suggestive of the results that will be obtained 
later. If we set l/NBo = 0 (completely cold gas), the right-hand side of the equa- 
tion disappears and a solution can then be obtained by taking W ,  = 0. Since the 
functions E,(x) and E3(x) remain finite for zero values of their argument, the same 
situation also occurs when a,, = 0 (completely transparent gas). In  these special 
cases, therefore, a solution is given by classical equilibrium acoustic theory. This 
is as it should be since, when the gas is either completely cold or completely 
transparent, no non-equilibrium radiation effects can occur. When l/NB, is 
finite and a,, approaches infinity (completely opaque gas), it  can be seen that the 
right-hand side of equation (38) again goes to zero. This is because the functions 
E,(x) approach zero exponentially for large values of their argument and thus 
outweigh the effect of the a,, that appears as a multiplying factor on the right. 
Thus again, a solution is given by classical acoustic theory. Tbis is so because, 
although there may be intense radiation, it is immediately reabsorbed at  its 
origin by the completely opaque gas, and no radiative transfer takes place. In  
the remaining limit l/NB, -+ co (infinite rate of heat transfer due to radiation), 
the left-hand side of equation (38) disappears and a solution can be obtained by 
taking either (a )  W, = 0 with TL = 0, or (b )  aW,/ax = 0 with dTh/dt = (WT)r=,,. 
Case ( a )  corresponds to ordinary acoustic waves, except that the speed of pro- 
pagation is now the isothermal instead of the classical isentropic speed of sound. 
This comes about because the condition of infinite heat transfer due to radiation 
now prevents any temperature differences from occurring in the gas. Case (b) ,  in 
view of the relation (36), corresponds to taking T' as a function of t alone, with 
T k ( t )  = Tk=,(t), which describes a spatially uniform system with gas and wall 
temperature varying only with time. This is also a reasonable possibility when 
the rate of heat transfer due to radiation is infinite. All of the foregoing instances 
will appear later as limiting forms of the solution of equation (38). Which of 
cases (a )  and (b )  above will prevail when l/NBo --f m will be seen to depend on the 
boundary conditions. 

For small departures from the limit a,, + co, equation (38) can be replaced by 
a pure differential equation by means of the Rosseland approximation (see 
Rosseland 1936; also Tellep & Edwards 1960). Rosseland reasoned that when 
reabsorption of radiation takes place in a distance over which there is little 
temperature change, it should be possible to replace the integrated effect of 
radiation by an equivalent differential term of the heat-conduction type. In  
the present linearized approximation this amounts to replacing Q' in equation 
(28) by Q' = kr0 PT'/i3x2, where k ,  is an equivalent thermal conductivity due to 
radiation. Using the value k, = 16d"i/3an (Rosseland 1936, p. 109) and com- 
bining equations as before, one then obtains in place of equation (38), 
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This same equation can also be obtained from the integro-differential equation 
(38) by a formal limiting process as a0 -+ 00. The solution of equation (40) would 
therefore give the appropriate asymptotic form of the solution of the full 
equation (38). 

Approximate solution of acoustic equations 

case of a black wall (r, = rs = 0 ,  E = 1). In  this case the equation reduces to 
For simplicity, we shall study here the solution of equation (38) only for the 

The boundary conditions imposed by the motion and temperature variation of 
the wall, when transferred to x = 0, are respectively 

2 (0, t )  = u’(0, t )  = a given function of t (43) 

and TL(t)  = a given function of t .  (44) 

$(a, t )  = a finite quantity. (45) 

The requirement that the disturbances must remain finite at  infinity gives the 
further condition that 

In  the present paper attention will be confined to the case of sinusoidal wall 
motion and temperature variation at equal frequency but with arbitrary relative 
phase. (Solutions for arbitrary wall motion and temperature variation can then, 
of course, be found by superposition.) Using complex notation we therefore take 
the solution for q5 in the form 

$ = (RT,/@) Re CH(8 e i 9  (46) 

where w is the radian frequency of oscillation. The factor RToIo is included to 
make the complex quantity H dimensionless. The argument of H has also been 
made dimensionless through division of x by the characteristic length uo/w to 

(47) 
obtain the new variable 

= wxla,. 

These steps lead to an equation for H(5)  containing the minimum number of 
parameters. 

Consistent with equation (as), the boundary conditions are written 

and 

where A and B are dimensionless complex constants, assumed to be specified. 
The fact that A and B are complex allows for the possibility of arbitrary phase 

$(a, t )  = (RTo/w) Re [H(oo) eiwt] = a finite quantity, (50) 
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between the motion and temperature variation of the wall. The magnitudes of 
A and B must be small compared with unity in conformity with the requirement 
of small disturbances imposed in the linearization. 

Substitution of equations (46) and (49) into equation (42) and cancellation of 
common factors leads to the following equation for H ( [ )  

where NBu is the Bueger number previously referred to and defined here by the 
relation NBu = a,ao/w. 

As follows from equations (48) and (50), the boundary conditions for H ( ( )  are 

( 5 2 )  

H’(0) = A ,  (53)  

and H ( m )  = a finite quantity. (54) 

Equation (51) is a linear integro-differential equation similar to that appearing 
in the Milne problem of isotropic scattering of radiation or slow neutrons (see, 
for example, Morse & Feshbach 1953). A method previously employed for solu- 
tion of the Milne problem could therefore be used here. This method, which is 
exact, utilizes the Fourier-transform plus the Wiener-Hopf technique for 
factoring the transform. The solution appears, however, in the form of an integral 
expression for the transform, which is inconvenient in an initial investigation. 
In  view of this, we shall adopt instead an approximate method that leads to 
a solution in closed form. The basis of this method is a device previously used in 
astrophysical radiation problems (see, for example, Chandrasekhar 1950), in 
which the continuous directional dependence of the radiation intensity is approxi- 
mated by a discrete directional dependence. For the present problem, this 
corresponds to replacing the integral over p in the definition 

E,(z) = e-cigd,u 

(see equation (14b)) by a sum over several discrete values of p. The approximation 
can be extended to any desired degree of accuracy and becomes exact in the 
limit of an infinite number of values of p. 

If the attenuation factor E2(z) is approximated by a sum of exponentials in 
the foregoing manner, the resulting integral equation can readily be solved. The 
solution, which appears as a sum of exponentials of complex arguments, becomes 
lengthy, however, as the number of terms in the approximation is increased. 
Here we shall adopt the simplest possible approximation, replacing the exact 
expression by a single exponential of the form 

j o l  

E&) N me-n“. (55a)  
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The best choice for the constants m and n is open to debate. To provide the 
correct first-order behaviour of the solution for small departures from the limit 
N,, --f 00, it  may be desirable to use an approximation that reproduces the 
Rosseland form of the governing equation in the limit. It can be shown that this 
will be accomplished if the value of the integral 

is matched for the exact and approximate expressions for E,(x). This condition 
is found to be satisfied by the foregoing approximation if 

E,(z) _N +n2e-"s, (55 b )  

where n is still arbitrary. To prescribe n i t  might now be appropriate to impose a 
requirement with regard to the behaviour for small departures from the limit 
NBu+ 0. Unfortunately, however, the correct asymptotic form of the theory for 
this limit is not known. We shall therefore resort to the intuitive idea that the 
best accuracy for intermediate and small values of NB, will be attained if the 
exponential expression approximates E,(z) as closely as possible over its entire 
range. This is accomplished by means of a least-squares fit, which can be carried 
out analytically and leads to the requirement n2+n-4 = 0. Solution of this 
equation gives n = 1.562. The exponential approximation is therefore taken as 

E,(z) 2: 0-813 e--15622. (55c )  

This approximation is compared with the exact relation in figure 2 .  
It will be noted from figure 2 that the exponential approximation (55 )  does not 

reproduce the infinite derivative of E2(z) at z = 0. For this reason the solution of 
the resulting approximate equation cannot be expected to lead to the singular 
behaviour previously anticipated in the derivatives of the physical quantities 
at the wall (cf. the paragraph following equation (33)). It is reasonable to suppose, 
however, that the values of the physical quantities themselves will be adequately 
approximated, even if their derivatives are not. Further discussion of the 
exponential approximation and of the values of m and n will be found in the 
concluding section. 

With E,(z) approximated according to equation ( 5 5 c ) ,  equation (51) becomes 

H ( ( )  + H''([) = - &iKP [B - H ( 0 )  - y-lH"(0)] e-pt 

- 1' exp { - P(6 - a} [H'(E) + y4H"'(E)I d!E 

( 

+ ~ ~ e x P i - P ( % - 5 ) } [ ~ ' ( % ) + y - ' H m ( E ) l d E )  , ( 5 6 )  

where we have for convenience introduced the notation 

/3 = 1.562NB,, K = S*33y/NB,. (57% 6) 

By virtue of the exponential approximation, this equation can now be converted 
into an ordinary differential equation by differentiating twice and then using 
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the undifferentiated equation to remove the integral terms. The general solution 
of the resulting fourth-order differential equation is then of the form 

( 5 8 )  

where the Ci’s and cj’s are complex quantities. This expression must also contain 
the general solution of the integro-differential equation (56); but, since differ- 
entiation may introduce additional solutions, it  may contain some spurious 

H(5) = C, eci5 + C, eczc + C, ec35 + C, ec45, 

0.5 1 .o 
2 

FIGURE 2. Comparison of exact and approximate values of attenuation factor. 

terms. It can be verified that this is not the case here-and equations for the 
evaluation of the Ci’s and ti's can be obtained at the same time-by substituting 
equation (58) directly into equation (56). This leads, after evaluation of the 
resulting integrals, to the equation 

For this equation to be satisfied for all values of 6,  it is necessary that the coeffi- 
cients of each eC2 and of e-86 be zero. Imposing this condition yields the five 

(60) 
relations 

and (61) 

(l+c;)-iK~~-~(y+C;)C;(Cg-p)-1 = 0 (j = 1,2 ,3 ,4)  

C y-’(y + c;) p(fi + cj)-l Ci = B. 
i 
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A sixth equation relating the Ci’s and ti's can be found by substituting equation 
(58) into the boundary condition (53) to obtain 

~ c ~ C ~  = A .  (62) 
j 

The equations (60) above are seen to be four identical fourth-order algebraic 
equations for the ti's. They will each have, therefore, an identical set of four 
complex roots that are the constants c,, c2, c,, and c, appearing in equation (58). 
Since the roots are four in number, we may conclude that the complete expression 
(58) is indeed the general solution of the integro-differential equation (56). 

At this point, a singular property of the characteristic equation (60) should 
be noted. For all finite, non-zero values of K and /3, the situation is as just 
described, i.e. the equation has four roots. When either K or p is identically zero, 
however, the equation reduces to a second-order equation, and there are only 
the two roots cj = f i. These are, in fact, the two roots appropriate to classical, 
equilibrium acoustic theory. In  the limit as K or /3 tends to zero, therefore, the 
problem has a kind of singular-perturbation behaviour. Despite this fact, 
however, we shall find that the solutions of the present non-equilibrium problem 
go over smoothly into those of equilibrium acoustic theory a t  these limits. The 
same situation holds when p + co. When K + 00, however, equation (60) remains 
of fourth order and has the four roots ci = & i,/y and ci = ~f: 0. As will be seen 
later, these matters are related to the limiting behaviour of the basic equation 
(38), as previously discussed. 

Returning now to the consideration of equation (60) in the general case, we 
note that the boundary condition (54) requires that the real part of cj be non- 
positive. Since equation (60) is quadratic in ci, half of its roots will in general 
have positive real part and must therefore be excluded. If c3 and c, are taken to 
be the two roots with positive real part, we must then take C, and C, equal to 
zero. Under these conditions, equations (61) and (62) provide two simultaneous 
linear equations for the determination of C, and C, in terms of the constants A 
and B and of the values of c1 and c2 found from equation (60). 

To find c1 and c2, one can solve equation (60) formally to obtain 

9 (63) 
- (1  -p2- iKp) 7 [( 1 -p2- iK,f3)2 + 4p2 (1 - iK/3/y)]*]* r 2(1 -iKP/Y) c1,2 = - 

where the upper sign goes with c1 and the lower with c,. Expressions for the real 
and imaginary parts of c1 and c2 can be obtained from this relation, but they are 
lengthy and involved owing to the successive square roots. Furthermore, sub- 
stitution of the results into equations (61) and (62) to find C, and C2 leads to 
relations that are cumbersome to handle. Again we shall look, therefore, for simple 
approximations that exhibit the essential results. 

A suitable approximation is suggested by noting that, when y = 1 in equation 
(go), the root c1 is given by c: = - 1 irrespective of the values of K and /3. This 
suggests that it might be useful to expand c; about y = 1 as a Taylor series in 
powers of (y - 1). If we are interested only in the first power of (y - I),  this can 
be done most readily by the obvious method of setting c; = - 1 + 5, where 5 is 
a small quantity of first order in (y-  I), and substituting this expression into 
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equation (60). Neglect of terms in 5 2  then leads to an equation that can be solved 
for 6. A considerable improvement on the Taylor expansion can be obtained, 
however, by noting from equations (60) or (63) that c; varies only from - 1 to 
- y as K covers the full range from 0 to co. This suggests trying an expansion in 
which the first term has the average of these two values of c: in place of the simple 
value of - 1 used before. We therefore set 

c2 1 -  - -L(  2 ? + 1 ) + 6 ,  (64) 

where 5 is again of order ( y -  l ) ,  and proceed to substitute into equation (60) 
as before. This leads finally to the result 

where 

The corresponding expression for ci can be found by factoring (c; - c:) out of the 
left-hand side of equation (go), i.e. by dividing the left-hand side by (c5-c:) 
where c: is given by equation (65). This leads to the result 

Comparison of limiting values obtained from these equations with corresponding 
values obtained from the exact equation (63) shows, surprisingly enough, that 
equations (65) and (67), with terms of O(y- 1 ) 2  neglected, give correctly the 
exact limiting values not only as y approaches 1 but also in all four limits as 
K and /3 approach 0 and co. It is reasonable to suppose therefore, particularly 
in view of the relatively small range covered by c:, that they will give a good 
approximation at  intermediate values of K and ,8. Spot checks at  particular 
values of K and /3 and with y = show an error of less than 5 yo as compared 
with exact values obtained from equation (63). 

The values of c1 and c2 are now readily found by taking the square root of 
equations (65) and (67) to obtain 

1 7 - 1  1+ia 
2 y + l  1-za 

c1 = - i r+) ;f [ 1 - - (--) 7 + 0 ( y - 1 ) 2 1  , 

c2 = - 

These equations are no longer exact in the limit as K and P tend to 0 and 03. 

For y = 8, however, the limiting values are in error by less than 0.4y0, and the 
spot checks at  intermediate values of K and /3 show an accuracy comparable 
to that cited above. 

The nature of the solution that has been obtained can now be examined by 
returning to expression (46) for the potential 4. At this point it is convenient to  

30-2 
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introduce symbols for the real and imaginary parts of c1 and c, according to the 
relations 

(70) 

(71)  

c1 = - (8, + iA l ) ,  

c, = - (6, + iA2)’ 

where the dimensionless S’s and A’s are positive real quantities. With H replaced 
by means of equation (58), equation (46) for q5 can then be written 

q5 = (RTo/w) Re [Cl exp ( - Slwx/a,) exp (iw(t - Alz/ao)} 

+ C, exp ( - 6,wx/ao) exp (io(t - A,x/a,)}]. (72) 

Equation (72 )  represents a superposition of two damped waves travelling away 
from the wall. The damping of each wave increases with the corresponding value 
of 6. The speed of the wave is determined by the value of A-specifically, it is 
equal to a,/A. 

Expressions for the 6’s and A’s can be obtained from equations (68) and (69). 
With the notation 

they are as follows: 
i? = (y -  l ) / (y+ 1) and b = Kfl/y, 173) 

6, = {~(y+i)}&ra/(l+-2)+0(y-1)2, (74a) 

(74b) A, = { t ( y  + i)}t (1 - &r( 1 -@,I( 1 + d)}  + o ( y  - i ) 2 ,  

( 7 5 b )  

To examine the nature of the two waves, the values of the 6’s and A’s for 
y = f have been plotted in figure 3 as functions of ,8 for three discrete values of K, 
corresponding to very high, intermediate, and very low temperatures. (For 
convenience, the definition of the variables is repeated in the figure caption.) 
The unusual nature of these plots may require the following explanation. The 
absorption parameter p has been taken as the primary variable, and high- and 
low-temperature values of K short of the limits co and 0 have been used, in order 
to show the boundary-layer-like behaviour of the results for certain combinations 
of the variables. Actual distances X on the horizontal scale have been plotted 
according to the formula X = 2/3/(1+,3) for the range of values of /3 from p = e 
to /3 = 1/e, where e < 1. Thus, X goes essentially from 0 to 2 as p goes from e 
to l/e. Outside this range, a t  both extremes of f3, the horizontal scale has been 
expanded arbitrarily to provide a representation of the boundary-layer-like 
behaviour near the limits. The representation here is thus qualitative in the 
horizontal direction but remains quantitative vertically. In  the uppermost plots 
of figure 3 , e  is taken to be of an order larger than 1/K. These plots can be regarded 
alternatively as representing the limit K -+ co when the arbitrarily expanded 
regions outside e and l/e are squeezed down to zero width. In  the lowermost 
plots, e is taken to be of an order larger than K. These plots can be thought of as 
representing the limit K + 0 when the expanded regions are eliminated. The fact 



Effect of thermal radiation on acoustic waves 469 

that the vertical scale for 8, in the left-hand plots is different from that for the 
other quantities should be noted. In the right-hand plots for K > 1 and < 1, the 
quantities that are small in the left-hand plots have been suitably amplified to 
make their variation more apparent. 
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FIGURE 3. Dimensionless wave-speed and damping factors h and 6 as functions of the 
dimensionless absorption and temperature parameters P and K .  For the meaning of h 
and 6, see equation (73) ;  the definition of independent variables is P 1.562a,aO/w, 
K = 8-33(y-  1) ~!Z'~/Rpoa,, where a,, is the absorption coefficient, a, the isentropic speed 
of sound, To the static temperature, and p, the mass density, all in the undisturbed fluid, 
o is the frequency of oscillation of the position and temperature of the wall, and u is the 
Stefan-Boltzmann constant, R the gas constant per unit mass, and y the ratio of specific 
heats. Other things being equal, the greater the value of P, the more absorbent the gas; 
the greater the value of K ,  the higher the temperature level of the system. -, C, term; 

P 
K 

, C, term. _ _ _ _  
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It is apparent from figure 3 that the Cl-term in the solution (72) is essentially 
a classical sound-wave, but with a slightly altered speed and a small amount of 
damping as the result of radiation. For a fixed value of /3 other than 0 and 00, 

the speed of this wave goes monotonically from the isentropic sound speed a, 
(A ,  = 1) to the isothermal sound speed a,/& (A, = Jr) as K goes from 0 to 00. 

Over the same range, which corresponds to a variation from very low to very high 
temperatures, the damping goes from zero to small positive values and then back 
t o  zero. When /3 is identically zero, the gas is completely transparent, and the 
wave is unaffected by radiation, i.e. the speed is a, and the damping is zero 
regardless of the value of K .  For /3 = 00, the gas is completely opaque, and again 
the classical result is obtained for all values of K .  The behaviour of this modified 
classical wave thus agrees in all of the various limits with that anticipated 
following equation (38), where the underlying physical reasons were explained. 
The limiting results can also be identified with the special roots of the character- 
istic equation (60) that were previously discussed-i.e. the limiting values for 
K + 0, /3 + 0, and /3 + co correspond to the single negative root of the equation 
in its singular limit; the values for K -+ co correspond to the first of the two 
negative roots in the non-singular limit. 

The results for the modified classical wave at  large values of K (very high 
temperatures) are somewhat curious. As shown in figure 3, the speed of the wave 
goes from a, to a,/Jy as /3 increases over a narrow range near /3 = K-l. At the 
same time the damping reaches a maximum and then returns to zero. A similar 
transition of the wave speed back to a, occurs for large values of p near p = K ,  
accompanied again by a sharp local peak in the damping. 

It is appropriate to recall here that the first-order departure from an infinite 
value of p in the present results corresponds to the Rosseland theory as a result 
of the particular choice (55 b )  for the exponential approximation. Working 
directly with the Rosseland-type equation (40) from the beginning leads to 
results similar to those given in figure 3, except that the dependence of the 
damping and wave speed on /3 and K is distorted at all except very large values 
of /3. Also, the eventual return with decreasing /3 to undamped waves with the 
classical speed a,, regardless of the value of K ,  is not predicted. 

In  contrast to the Rosseland theory, the work of Stokes (1851) applies, in some 
imprecise way, for small values of p. Stokes realized at  the outset that high levels 
of radiative transfer can result in an isothermal speed of sound. To see if this can 
occur under ordinary atmospheric conditions he analysed a model that assumes, 
in effect, that the radiative transfer takes place between each element of gas and 
a reservoir at the undisturbed temperature. This model can be justified physically 
for small p. Although not in possession of data on the absorption coefficient of air, 
Stokes reasoned essentially that /3 is small because air is transparent. He also 
reasoned, in effect, that K must be small because when a small portion of a mass 
of air at atmospheric conditions is heated in some fashion, it does not immediately 
fall back to ambient temperature by radiation. With present-day knowledge, we 
can verify these deductions quantitatively. For air at atmospheric temperature, 
we find, in fact, that ,8 < 1/3Of, where f is the frequency of the waves in cycles per 
second, and that K 2: 4 x For these small values of /3 and K ,  the results for 
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the modified classical wave in figure 3 show, in agreement with the final conclusions 
of Stokes's analysis, that the sound speed is a, and the damping is negligible. 

Turning now to the C,-term in equation (72), we see that this term represents 
a type of sound wave that has no counterpart in classical acoustic theory. (Since 
equation (40) is of fourth order in derivatives of 9, this wave could also be obtained 
with the Rosseland theory; it could not, however, have appeared in Stokes's 
work.) Contrary to the situation with the modified classical wave, the speed 
and damping of this radiation-induced wave are strong functions of K and p. 
At all values of K ,  the speed varies from infinite (A, = 0) at p = 0 to zero (A, = 00) 

at p = 00. This is so even though the radiative signal, on which the wave depends, 
itself travels at  infinite speed. The damping of the wave has a similarly large 
variation, going in all cases from zero at  j3 = 0 to infinity at p = CO. The precise 
way in which the variations with /3 occur, however, has a marked dependence 
on K .  The result is that, for a fixed value of /3 > 1, the damping goes mono- 
tonically from a sizeable positive value a t  K = 0 to zero at  K = 00; the wave speed 
goes at the same time from an infinite value to finite values and then back 
again to infinity. Over most of ,the range of the variables, the radiation-induced 
wave has a greater damping and a higher speed than the modified classical wave. 
At sufficiently high temperatures, however, the damping of the two waves may 
be comparably small; and, in a sufficiently absorbent gas, the speeds may be 
essentially equal. 

It may be noted that at  the limits K -+ 0, p + O  and p+00, in which the 
Cl-term was seen to reduce to the classical acoustic wave, the results of figure 3 
show specific, well-defined values for A, and S,. It follows, for example, that, in 
the limit K -+ 0 ( A ,  = 0, 8, > 0 ) ,  the radiation-induced wave has the form 
C, exp ( - S2wx/ao) exp (iwt), which describes a damped standing wave of infinite 
wavelength. Such a wave, however, has no counterpart in classical acoustic 
theory. The existence of A, and 6, in all of the aforementioned limits is asso- 
ciated, in fact, with the roots of the characteristic equation (60) that disappear 
discontinuously when K and pare identically equal to their limiting values. How 
the full solution goes over into that of classical acoustic theory will be apparent 
only after we have examined the role played by the boundary conditions. 

The dependence of the solution on the boundary conditions can best be shown 
by studying the response of the gas to the motion of a constant-temperature wall 
and to the temperature variation of a motionless wall. To do this, c1 and c2 from 
equations (68) and (69) are substituted into equations (61) and (62) and these 
equations then solved for Cl and C, for the special cases B = 0 and A = 0. When 
expressed in terms of amplitude ratios, and with the notation 

r4 = {Pz++(y+l)).t, r5 = (1+a,)+, O1 = -tan-lb, 

the results are as follows: for pure wall motion, 

and 
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for pure wall-temperature variation, 

and 

(The corresponding phase relationships could also be obtained, but they give 
nothing of particular interest.) If $,(z,t) is the part of the solution (72)  corre- 
sponding to the Cl-term, the ratios for Cl can be written 

and similarly for C,. The ratios (76)  and (77)  thus provide a dimensionless measure 
of the intensity of response of a given wave at  the wall compared with the 
intensity of the wall motion or temperature variation. It will be observed that 
the error in equations (76a) ,  (77a) ,  and (77b)  is of O(y- 1) instead of O(y- I), as 
in other relations. This is due to the neglect here of a small but very complicated 
term of O(y-  1 ) ;  this term is identically zero at  the limiting values of K and /3, 
and spot checks show it to be less than 0.02 elsewhere. 

Results obtained from equations (76)  and (77)  are given in figures 4 and 5 
on the same basis as before. These results show that, whenever radiative non- 
equilibrium is present, either type of wall disturbance gives rise to both kinds 
of waves. For pure wall motion (figure 4), the Cl-wave predominates at  all con- 
ditions, but the C,-wave is present to some extent. For pure wall-temperature 
variation (figure 5 ) ,  the C,-wave predominates a t  very high temperatures, but 
a t  lower temperatures the two waves are of comparable intensity. One must 
therefore resist the temptation to make a categorical statement that the C,-waves 
are due to wall motion and the C,-waves to temperature variation. Actually, 
the two waves are coupled through the thermodynamics of the gas. Any dis- 
turbance, even though it may tend primarily to excite one type of wave, must also 
give rise to the other. 

The behaviour of the complete solution in the various limits is now clear from 
the results of figures 4 and 5 .  In  the three limits K --f 0,  /3 -+ 0, and ,8 -+ 00, the 
following results hold: 

for B = 0, IC,l + IAl, IC,l + 0; for A = 0, ICll -+ 0, IC,l -+ 0. 

We see that the C,-wave disappears, irrespective of the limiting behaviour of A, 
and S, as previously noted. We thus obtain, in these limits, classical acoustic 
theory, in which wall motion produces only a Cl-wave and wall-temperature 
variation has no effect whatsoever. The implications of the basic integro- 
differential equation (38) in these limits are thus realized. In  the limit K -+ 00, 

the following situation prevails : 

for B = 0, ICll + IAl/Jy,  IC,l -* 0; for A = 0, ICll -+ 0, IC,l -+ IBI. 

Here, as in the previous limits, pure wall motion produces only a Cl-wave, 
though, as we have seen in figure 3, the wave speed is now the isothermal speed 
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of sound. This corresponds to case ( a )  in the discussion of this limit following 
equation (38). I n  contrast to the previous limits, however, pure wall-tem- 
perature variation now also has an effect, producing a pure C2-term. Since 
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FIGURE 4. Dimensionless measure of intensity of a given wave at the wall as compared 
with intensity of wall motion when wall temperature is constant. For definition and inter- 

P K 

pretation of independent variables P and K ,  see figure 3. __ 7 ( l c l [ / l A l ) B = O ;  ----) 

( I c21 / I A  1 )B=O’ 

A, = 8, = 0 as K --f GO (see figure 3), this term here represents a field that, is 
uniform in x and varies only with t. This corresponds to case ( b )  in the discussion 
following equation (38). Thus, in the limit of infinitely high temperatures, the 
infinite heat transfer results in an uncoupling of the effects of wall motion and 
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temperature variation. (It is interesting to note that this limit at which both 
types of waves can exist is also the limit a t  which the characteristic equation 
(60) is non-singular.) 
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intensity of wall-temperature variation when wall is motionless. For definition and inter- 
pretation of independent variables P and K ,  see caption to figure 3. --, ( ~ C l ~ / ~ B ~ ) A ~ o ;  

P K 

s ( I GI /I Bl )A=O. 

Concluding remarks 

__-- 

The foregoing work rests, of course, on the use of the exponential approxi- 
,. ,--. n .. . .  ,. n . - -. . . .  .1 . _  

mation (55) for the attenuation tactor f C 2 .  It is apparent, however, that the 
precise choice of the constants m and n in the approximation is a secondary 
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matter. As has been seen, the exponential approximation yields, at  the various 
limits, the results anticipated on the basis of the cmplete integro-differential 
equation (38)-and this would be true irrespective of the values of m and n. 
The only effect of changing these values would be to change the constants in the 
equations (57) that relate the numbers NB, and NEo to the parameters p and K ;  
the subsequent analysis in terms of these latter parameters would be unaltered. 
The qualitative results of the analysis would thus remain unchanged, and only 
the quantitative findings in terms of the original physical variables would be 
affected. 

A more serious question is the restriction to only one exponential term in the 
approximation. The use of more than one term of this kind leads to a slight 
alteration in the dependence of the speed and damping of the present C,- and 
C2-waves on the temperature and absorption of the gas. This comes about through 
a modification of the functional relationship of NBu and NBo to p and K. In  
addition, more waves of the C,-type are introduced, all with an almost infinite 
speed but with varying damping. In  the limit of an infinite number of exponen- 
tial terms, where an exact solution is obtained, there are an infinite number of 
such waves. It seems reasonable to suppose, however, that the contribution of 
the additional component waves needed to correct the present result will 
generally be small compared with that of the waves studied here. The present 
solution should therefore represent the essential character of the phenomena. 

Proof of this assertion for large distances from the wall can be obtained, in 
fact, by studying equation (51) for large values of (. It is found that, for suffi- 
ciently high values of NBu, an asymptotic solution for H ( 5 )  can be found in 
exponential form even with the exact integral representation (14b) for E,. 
The resulting characteristic equation for the ci differs somewhat from equation 
(60), but the final results agree qualitatively with those of the present solution 
based on the exponential approximation. For small values of NBu the situation 
is more complicated, but again it can be shown that the present approximate 
solution agrees essentially with the exact asymptotic behaviour. 

From the physical point of view, the most critical approximation in the present 
work is that of the grey gas, i.e. that the absorption coefficient a, is independent 
of v. Actually, this unrealistic assumption is not essential, and the present results 
for the case of a black wall can be obtained on a less restrictive basis. For this 
case, an integro-differential equation formally identical to equation (42) can 
still be derived, even without the grey-gas assumption. The only difference is 
that the attenuation factors E, must be replaced by a function of x that is given 
as a, complicated double integral over v and ,u with a,, appearing in the integrand 
(a,, being the value of a, in the undisturbed gas). This function, rather than E,, 
is then approximated by a single exponential term, with the constants m and n 
determined on the same basis as before. The approximation procedure of the 
present paper, in fact, is reproduced as a special case when a,, is made a constant. 
The final outcome of the generalized approach is that equation (56 )  for H ( ( )  
and all of the results of the analysis in terms of /3 and K are obtained precisely 
as before. The only change is that the numerical coefficients in equations (57) 
relating /3 and K to NBu and NBo now depend on the variation of a,, with v. The 
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details of these matters will be given elsewhere. An approach of this kind would 
be desirable in any attempt to check the present results against experiment. 

Before concluding, the relationship of the present work to that of Prokofyev, 
mentioned in the introduction, should be noted. Prokofyev considers a gas of 
infinite, rather than semi-infinite extent, so that his results correspond in a sense 
to the situation for large 6 discussed in the third paragraph of these remarks. 
In  fact, when effects due to viscosity, thermal conductivity, etc., are discarded 
and the grey-gas approximation introduced, Prokofyev’s characteristic equation 
(Prokofyev 1960) agrees identically with the characteristic equation that arises 
in the asymptotic solution found on the basis of the exact expression for E,. 
The analytical results that Prokofyev gives for large and small values of the 
various parameters, when also specialized to the present gas model, agree 
essentially with those obtained here for the modified classical wave. Although the 
radiation-induced wave is also implicit in Prokofyev’s characteristic equation, 
he takes no notice of this fact. 

Finally, results analogous to those presented here have also been found for 
acoustic waves in an infinite expanse of a viscous, heat-conducting gas (Truesdell 
1953) and for dilational waves in an infinite thermoelastic solid (Deresiewicz 
1957). In  both of these cases, the exact governing equations are purely differ- 
ential equations that can be shown (provided viscosity is ignored in Truesdell’s 
case) to be formally identical to the approximate Rosseland-type equation (40) 
of the present paper. Both analyses again reveal the existence of two waves, 
one a modification of the classical equilibrium wave and the other a wave induced 
by the dissipative effects. 

The authors are indebted to Prof. Milton D. Van Dyke for valuable criticism 
and discussion and to Dr Chi-chang Chao for pointing out the analogous results 
from thermoelasticity. The work was done as part of a research programme being 
conducted in the Department of Aeronautical Engineering, Stanford University 
under a grant from the National Science Foundation. 
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